2018年07月04日

●「AIは真に文章の意味がわかるか」(EJ第4799号)

 AI(人工知能)が人間の話す言葉を理解し、それに対する返
事を返してくる──一昔前では考えられなかったことですが、今
ではそれが当たり前のようになっています。
 アイフォーンの「シリ」だけでなく、アマゾンの「アレクサ」
グーグルの「グーグル・アシスタント」、ドコモの「しゃべって
コンシェル」などたくさんあります。なかには、「女子高生AI
りんな」という怪しげなものまで出現しています。「りんな」は
LINE上でユーザーの会話の相手をしてくれるAIです。20
15年に登場し、LINEユーザーの友だちは、530万人とい
いますから、驚きです。
 ところが、これらのAIが、本当に「言葉の意味が理解できて
いるのか」というと、それは大変疑問です。これについては、学
者の間でも意見が分かれているといいます。
 近代言語学の父といわれるスイスの言語学者フェルディナン・
ド・ソシェールは、「言語というものは記号の体系」といってい
ます。これについて、ウィキペディアには、次のように説明があ
ります。
─────────────────────────────
 ソシュールは、言語(ラング)は記号(シーニュ)の体系であ
るとした。ソシュールによれば、記号は、シニフィアン(たとえ
ば、日本語の「イ・ヌ」という音の連鎖など)とシニフィエ(た
とえば、「イヌ」という音の表す言葉の概念)が表裏一体となっ
て結びついたものである。そして、このシニフィアンとシニフィ
エの結びつきは、恣意的なものである。つまり、「イヌ」という
概念は、“Dog” (英語)というシニフィアンと結びついても、
"Chien" (フランス語)というシニフィアンと結びついても、ど
ちらでもよいということである。     ──ウィキペディア
                  https://bit.ly/2KGqPpa
─────────────────────────────
 従来のAIは、この表裏を結びつけることができなかったので
すが、いわゆる「グーグルの猫」によって、この問題はある程度
前進したといえます。この「記号がいかに実世界との関わり合い
において意味を持つか」という問題のことを「シンボルグラウン
ディング問題」と称しています。
 国立情報学研究所教授の新井紀子氏という人がいます。新井教
授は、人工知能分野のグランド・チャレンジ「ロボットは東大に
入れるか」のプロジェクト・ディレクターを2011年から務め
ていた方です。いま新井教授の執筆された次の本が、一大ベスト
セラーズになっています。
─────────────────────────────
          新井紀子著/東洋経済新報社刊
     『AIvs教科書が読めない子どもたち』
─────────────────────────────
 新井教授が目指したのはロボットを東大に入れることではなく
人間と比較して、AIの可能性と限界を明らかにすることにあっ
たのです。しかし、この研究の結果、驚くべきことが鮮明になっ
たのです。その「驚くべきこと」を書籍として上梓したのが上記
の本です。新井教授は、この本のなかで、AIは言葉の意味を本
当に理解しているのかについて、次のように述べています。
─────────────────────────────
 AIが文章を論理的に読めるようになるとしたら、まずは、文
がどこで区切られるか、つまり文節が理解できなければなりませ
ん。それができたら、「何がどうした」という主語と述語の関係
や修飾語と被修飾語の関係を理解しなければなりません。これを
「係り受け解析」と言います。
 また、文章には「それ」「これ」といった指示代名詞が頻繁に
出てきますから、指示代名詞が何を指すかも理解できなければな
りません。それを「照応解決」と言います。
 東ロボくんは、これらの処理を大学の入試問題に適用して、代
名詞が何を指すかといった入試の問題が解けるようになったわけ
です。それでは、係り受け解析や、照応解決ができたからといっ
て、意味がわかったといえるでしょうか?
 それだけでは、意味を理解したとは言えないでしょう。それで
は、そもそも「意味を理解する」とは、いったいどういうことな
のでしょう?          ──新井紀子著の前掲書より
─────────────────────────────
 これは大変難しい問題です。新井教授は、6年間にかけて、プ
ロジェクトにおいて、さまざまなかたちで、AIに東大入試の問
題を解かせてみて、AIの限界を感じ取ったといいます。
 しかし、AIの偏差値は57を超えたのです。偏差値57とい
うと、高校3年生の上位20%に相当する成績です。この偏差値
なら、一部の私立有名大学には、十分合格するレベルにあること
を示しています。
 このロボットは「東ロボくん」というのですが、彼は言葉の意
味を理解して問題を解いているのではないのです。つまり、人間
のように何かを読んで、それを理解し、そのうえで問題の解を得
るのではないのです。それらしく見せているだけです。
 しかし、東ロボくんは、小論文ぐらいは書くことができます。
教科書とウィキペディアを検索し、文を取り出して組み合わせ最
適化したうえで書くだけなのですが、衝撃的なのは、たいていの
学生が書くものよりかなり質が高いという事実です。
 このとき、新井教授は考えたのです。なぜ、文章を読んで意味
が理解できないAIが人間に勝てるのだろうか。本当に人間の中
高生は、文章を読めているのだろうか、と。
 そこで、新井教授は、本当に中高生が日本語の言葉の意味を理
解しているのかを調べる「リーディング・スキル・テスト」を開
発し、2016年4月から1017年7月末までに、全国の2万
5千人がこのテストを受験しています。強制でない調査にこれほ
どの協力が得られたのは珍しいことです。
          ──[次世代テクノロジー論U/043]

≪画像および関連情報≫
 ●人工知能(AI)の苦手なことは「言語理解」
  ───────────────────────────
   AIと人間を分けるのは「言語理解」だ。言語を理解する
  ためには単語の意味だけでなく、それが使われている背景や
  文脈の理解も必要になるためその全てをAIに理解させるこ
  とは難しい。これはイラストの理解にもいえることだ。よっ
  て、今後人間がAIに勝つとすれば、コミュニケーション分
  野にあると、東京大学大学院経済学研究科・経済学部教授の
  柳川範之氏は指摘する。(2016年7月25日開催日本ビ
  ジネス協会JBCインタラクティブセミナー講演「ファミリ
  ービジネスと産業構造の変化」より、全8話中第6話)
   では(AIに対する)人間の相対的な有利性は何なのか。
  人間の強みはどこにあるのかに関する解説です。これについ
  ては、本当ならAIの専門家にきちんと聞いた方がいいので
  すが、社会科学者なりの私の理解を申し上げます。現状での
  AIの強みは、ビックデータにあります。すなわちデータの
  蓄積が重要なのです。ディープラーニングは必要なデータ量
  を大きく下げることに成功し、比較的少ないデータでもたく
  さんのことが分かるようになってきました。しかしそれでも
  データの蓄積が命です。そう考えるとデータの蓄積が使えな
  い、データの蓄積による学習が使えない分野は、人間の方が
  相対的に強みがあることになります。それは、「全く新しい
  組み合わせを考える」ことです。つまり、過去のデータがな
  いため、全く新しい組み合わせを考えようとしても、それら
  の個別性が強く、過去のデータがデータとして使えない。こ
  ういう問題に関しては、人間の方が相対的に有利性を持つと
  いうことが分かっています。   https://bit.ly/2u0miqu
  ───────────────────────────

新井紀子国立情報学研究所教授.jpg
新井紀子国立情報学研究所教授
posted by 平野 浩 at 00:00| Comment(0) | 次世代テクノロージ論U | このブログの読者になる | 更新情報をチェックする
この記事へのコメント
コメントを書く
お名前: [必須入力]

メールアドレス: [必須入力]

ホームページアドレス:

コメント: [必須入力]

RDF Site Summary