2018年06月12日

●「ヒントンのカブセルネットワーク」(EJ第4783号)

 ジェフリー・ヒントン氏──1947年の英国生まれの科学者
であり、今やAI(人工知能)、なかんずくニューラルネットワ
ークの権威であり、ディープラーニングの世界では、最も影響力
を持つ人物の一人といわれています。ヒントン氏は、トロント大
学教授という籍を持ちながら、グーグルの研究員をしており、世
界のAI技術を牽引しています。
 小林雅一氏によると、ヒントン教授は、コンピュータ基礎理論
のひとつである「ブール代数」を発明した数学者、ジョージ・ブ
ールの子孫といわれます。ジョージ・ブールは数学の世界に「論
理」を取り入れた人物であり、AIと密接な関係があります。
 当時、数学は「数」や「図形」を扱う学問で、「論理」は哲学
の分野であると考えられていました。しかしブールは論理や推論
を数学的に考えられるのではないかという発想を持ち、1844
年の論文において「演算」を記号で表し、その記号同士の計算を
考えたのです。これがプール代数です。
 ヒントン教授の凄いところは、2度にわたる「AIの冬」を経
てもAIの研究を続けたことです。そして、やっと2012年6
月にグーグルとスタンフォード大学のAI研究チームは、動画の
なかから「猫」を認識したのです。
 しかし、これにはディープラーニングに与えるデータの前処理
というものが必要です。しかも、大量のデータを与える必要があ
ります。2012年の快挙のときでも、ユーチューブからランダ
ムに選んだ動画から、一定のピクセルサイズの画像を1000万
枚も準備していますが、これが前処理です。
 この1000万枚の画像のなかに偶然最も多く写っていたのが
「猫の画像」であり、AIは「猫」を認識できたのです。もう少
し詳しくいうと、その画像のなかに、さまざまな角度からの猫の
画像が入っていたからであるということができます。
 人間の子供であれば、「これが猫だよ」と教えられれば、どの
ような角度からでも、すぐ「猫」だと認識できます。他のどのよ
うな猫に関しても同じです。しかし、ニューラルネットワークで
は、画像のピクセルがほんの少し動いただけでも画像を全然別の
ものと認識してしまいます。そういう誤差が起きないように、た
くさんの画像を認識させる必要があります。
 これに関してヒントン教授は、2017年10月に「カプセル
ネットワーク」という名の論文を発表しています。その原文のU
RLは、次の通りです。
─────────────────────────────
             Geoffrey E. Hinton
      Dynamic Routing Between Capsules
                  https://bit.ly/2xXEB4P
─────────────────────────────
 これによって、AIの画像認識率が格段に向上したのです。こ
れまでのニューラルネットワークの最高時の精度を実現でき、そ
の誤答率はニューラルネットワークの最低時の半分のレベルまで
減少したといわれます。
 「カプセルネットワーク」とは何でしょうか。
 この「カプセル」という概念がかなり難解です。カプセルネッ
トワークについて解説しているサイトによると、カプセルについ
て次のように説明しています。
─────────────────────────────
 「カプセル」とは、むき出しの仮想ニューロンの小さな集合体
で、猫の鼻や耳のような、ある物体の異なるパーツと、空間にお
けるそれらの相対的な位置を探知するよう設計されている。多数
のカプセルによるネットワークは、新たな場面について、「実は
すでにある場面を違う視点から見たものだ」と理解し、その気づ
きを利用する。           https://bit.ly/2HALKYj
─────────────────────────────
 添付ファイルを見てください。人の顔を認識するときに、従来
のニューラルネットワークでは、それが目なのか、鼻なのか、口
なのかにしか着目していないのです。ちょうど、左の画像のよう
に認識しています。
 これに対し、カプセルネットワークでは、右の画像のように、
それらの特徴がどのような関係で配置されているかまで含めて認
識します。つまり、カプセルネットワークでは、目や鼻や口や耳
の特徴を独立的にとらえるだけでなく、それらがどのような位置
関係で配置されているかまで認識します。
 ひとつひとつのカプセルにつまったニューロンが個々の特徴に
着目するだけでなく、それぞれの位置関係まで把握するのです。
ここにカプセルネットワークの名前の由来があります。
 ヒントン教授のこの最新の論文にについては、発表されたばか
りであり、その成果をうんぬんするには、まだ早いかもしれませ
んが、確実に従来のニューラルネットワークを前進させるもので
あり、各方面から多くの賛辞が寄せられています。
─────────────────────────────
◎ローランド・メミセヴィッチ/モントリオール大学教授
  与えられたある量のデータから、既存のシステムよりも多く
 の理解を得られる。
◎ゲイリー・マーカス/ニューヨーク大学教授
  ヒントンの最新の業績は、歓迎すべき新たな風の息吹を象徴
 しています。AI分野の研究者たちは、脳にもともと組み込ま
 れている仕組みを積極的に真似るべきです。視覚や言語といっ
 た必須の能力を身に付けるために役立つのですから。
  新たに登場した体系が、どこに行き着くかはまだ分かりませ
 ん。でも、これまでのAI研究が固執し、はまり込んでしまっ
 ていた轍から抜け出す方法を見つけたという点において、ヒン
 トンは素晴らしい成果を挙げたといえるでしょう。
                  https://bit.ly/2HALKYj
─────────────────────────────
          ──[次世代テクノロジー論U/027]

≪画像および関連情報≫
 ●深層学習を根底から覆すカプセルネットワークの衝撃
  ───────────────────────────
   現在の深層学習ブームのきっかけを作ったのが、トロント
  大学のジェフリー・ヒントン教授であることには誰も疑問を
  抱かないでしょう。ヒントン教授らのグループはそれまで目
  覚ましい成果がなかなか出なかった画像認識という分野に深
  層畳み込みニューラルネットワークという新しいアイデアで
  取り込み、目覚ましい成果を挙げたことで、グーグルはヒン
  トン教授の設立した企業DNNリサーチを買収し、今のディ
  ープラーニングブーム旋風が世に巻き起こりました。だいた
  い、この手のニューテクノロジーブームというのは、2、3
  年で落ち着くのが常です。
   しかし、稀にブームで終わらずに、本物のイノベーション
  になる技術があります。たとえば、モバイル・インターネッ
  ト、リアルタイム3Dコンピュータグラフィックス、スマー
  トフォンなどです。
   スマートフォンの場合、なにもアイフォーンが最初ではあ
  りませんでした。アイフォーンのプロトタイプのようなもの
  が1990年代後半からいくつも登場しては消えていったの
  です。人工知能分野のなかでも、特にニューラルネットワー
  クはスマートフォンと似ています。過去に何度も注目を集め
  ブームになりながら、いまひとつ定着できずイノベーション
  に昇華できなかったもののひとつです。
                  https://bit.ly/2kWUFdI
  ───────────────────────────
 ●添付ファイル画像出典/https://bit.ly/2prgd4T


カプセルネットワークとは何か.jpg
カプセルネットワークとは何か
posted by 平野 浩 at 00:00| Comment(0) | 次世代テクノロージ論U | このブログの読者になる | 更新情報をチェックする
この記事へのコメント
コメントを書く
お名前: [必須入力]

メールアドレス: [必須入力]

ホームページアドレス:

コメント: [必須入力]

RDF Site Summary