2018年06月06日

●「パーセプトロン/その正体を知る」(EJ第4779号)

 「パーセプトロン」──AIの話をするときは、必ず出てくる
キーワードです。パーセプトロンについては、もう少し書く必要
があります。不明な点がたくさんあるからです。
 実はAI(人工知能)の研究は、「ルールベースのAI」から
始まったわけではないのです。最初はコンピュータで何とか「人
工の脳」を作ろうとしたのです。
 1943年のことです。米国の神経生理学者のウォーレン・マ
カロック氏と論理学者のウォルター・ピッツ氏が、共同で次の論
文を発表したのです。
─────────────────────────────
    ウォーレン・マカロック/ウォルター・ピッツ著
      『神経活動に内在するアイデアの論理演算』
                     1943年
─────────────────────────────
 人間の脳は、ニューロンという神経細胞が複雑に絡み合い、全
体でネットワークを形成しています。これが、神経回路網、すな
わち、ニューラルネットワークです。
 マカロックとピッツ両氏は、基本単位であるニューロンの振る
舞いを「ステップ関数」と呼び、それを数式によって表現したも
のを「形式ニューロン」と呼んだのです。つまり、数学モデルの
話なのです。しかし、これはシステムにはなっていません。
 この先駆的研究を引き継いだのが、コンピュータ科学者のフラ
ンク・ローゼンブラット氏です。彼はこの形式ニューロンを複数
組み合わせて、情報の入力層と出力層から成るきわめてシンプル
な人工的ニューラルネットを開発し、「パーセプトロン」と名付
けたのです。
 上記のように、この形式ニューロンは数式であり、それを組み
合わせたニューラルネットも数学的な産物です。しかし情報の入
力層と出力層を持っているので、一応システムになっています。
何らかの情報を入力し、計算結果として出力情報を得ることがで
きるからです。したがって、パーセプトロンとは、そういうこと
ができるハードウェアではなく、ソフトウェア的な数学モデルで
あるということができます。
 このパーセプトロンがマービン・ミンスキー氏とシーモア・パ
パート氏によって否定されたことは昨日のEJでふれましたが、
具体的には次のようにいったのです。
─────────────────────────────
 パーセプトロンは、原理的、かつ致命的な問題を抱えているた
め、いくつかの単純な論理計算、たとえば、排他的論理和をコン
ピュータ上に実現できない。    ──小林雅一著/朝日新書
                  『クラウドからAIへ/
    アップル、グーグル、フェイスブックの次なる主戦場』
─────────────────────────────
 ここでいう「排他的論理和」とは何でしょうか。
 Aという円とBという円が一部重なっているとします。その重
なった部分は、AでもありBでもある部分ですが、その部分を排
除するというのが排他的論理和です。集合の問題です。これを小
林雅一氏は、次のようにわかりやすく説明しています。
─────────────────────────────
 「排他的論理和」とは・・・
 たとえば、母親が小さな子供に向って、「チョコかプリンのど
ちらかは食べていいけど両方は駄目よ」と言うようなものです。
                ──小林雅一著の前掲書より
─────────────────────────────
 つまり、小さい子供でもわかる「排他的論理和」ですが、パー
セプトロンにはわからないということで、パーセプトロンの信用
は失墜したのです。
 しかし、今になって考えてみると、この単純な人工脳パーセプ
トロンがベースになり、ニューラルネットワークとして、AIは
息を吹き返したのです。2006年頃のことです。その立役者は
英国のコンピュータ科学者、ジェフリー・ヒントン氏です。彼こ
そ「ディープラーニング」の命名者です。AIは、人工脳への挑
戦にはじまり、50年以上の年月を重ねて再び脳の研究に戻った
のです。ここまでのAIの歴史を辿ると次の4段階になります。
─────────────────────────────
    1.パーセプトロンAI ・・ 1950年代
    2.ルールベースのAI ・・ 1980年代
    3.統計・確率的なAI ・・ 1990年代
    4.脳科学に基づくAI ・・ 2000年代
─────────────────────────────
 最初は、何とか人間の脳を人工的に作り出したいと考えたので
す。その結果、パーセプトロンが考案されます。これによって世
の中は一時騒然となったのです。しかし、それが小さい子供の脳
にすら、はるかに及ばないとわかって、多くの投資家は資金を引
き上げ、1回目の「AIの冬」に突入します。
 続いて、高性能コンピュータの開発を前提として、コンピュー
タに多くの知識を与えることによって、推論により人間の脳を模
倣する「エキスパートシステム」ブームになります。「ルールベ
ースのAI」の時代です。
 しかし、やがて、コンピュータに知識を与えること(知識の獲
得)の困難性が露呈します。人間の持つ知識の多いことと、つね
に新しい知識が増えるので、知識の獲得が極めて困難であること
が明らかになり、AIは2回目の「AIの冬」に突入します。
 1990年から2000年にかけてインターネットが普及し、
ウェブサイトが激増します。それを知識ベースとして利用し、グ
ーグルの統計学エンジニアが中心になって「統計・確率的AI」
が台頭します。その結果、検索の精度が飛躍的に向上するととも
に、機械翻訳などの他のAIの精度も向上します。しかし、この
「統計・確率的なAI」の限界も明らかになり、再び人工脳の開
発が始まるのです。 ──[次世代テクノロジー論U/023]

≪画像および関連情報≫
 ●ベイジアンネットワーク/AIの歴史/後編
  ───────────────────────────
   ベイズ理論をベースにしたベイジアンネットワークは19
  80年頃に研究が始められました。これは統計・確率論的な
  アプローチによるAI技術です。
   ベイズ理論とは、観測を繰り返すごとに確率を修正して正
  解に近づけるという考え方であり、それをもとにしたベイジ
  アンネットワークは因果関係を確率で表現するグラフィカル
  モデルです。
   ある事象に対する原因の確率と結果の確率をノードとし、
  それらをエッジで繋いだ形で表現されます。観測によって得
  た新たな情報をベイジアンネットワークに投入するとそれぞ
  れの確率が変化し、その確率に基づいて推論を行います。ベ
  イジアンネットワークには原因から結果を推論することも、
  結果から原因を推論することも可能であるという特徴があり
  ます。ベイジアンネットワークはネットショップでのお勧め
  商品紹介、健康診断結果からの疑わしい病気の推定、スパム
  フィルタ、ウェブ侵入検知など、様々な分野での実用例があ
  ります。そして現在でも、ビッグデータ活用の手法の一つと
  して利用されています。
   統計・確率論的なAIに対しては、「統計と確率が基本に
  あるため、それは知性や知能ではない」という批判がありま
  す。膨大なデータの解析結果から単語の辞書的な意味を確率
  的に知ることはできるが、その単語の本当の意味を理解する
  ことはできません。人間の知能そのものを作るということを
  目的とした場合、統計・確率論的なAIはいつか限界に達す
  ると予想されます。       https://bit.ly/2HgYKlU
  ───────────────────────────

パーセプトロン理論.jpg
パーセプトロン理論
posted by 平野 浩 at 00:00| Comment(1) | 次世代テクノロージ論U | このブログの読者になる | 更新情報をチェックする
この記事へのコメント
日本語の文章は不正確な物が非常に多く、これらを元にしか出来ない日本語AI学習は外国に比べて不利でしょう。
AI学習ができたとして東大話法をAIに組み込まれればその結果を誰が信用できますか。
Posted by aiueo at 2018年06月06日 08:08
コメントを書く
お名前: [必須入力]

メールアドレス: [必須入力]

ホームページアドレス:

コメント: [必須入力]

RDF Site Summary