2017年10月26日

●「ムーアの法則を続けるテクノロジ」(EJ第4633号)

 限界説が出ているとはいえ、「ムーアの法則」がここまで続い
ている原動力になっいる「デナード則」、正確には「デナード・
スケーリング則」について、もう少し詳しく説明します。デナー
ド則というのは、IBMのエンジニアのロバート・デナード氏が
提唱した法則で、定義は次のようになっています。
─────────────────────────────
 半導体の回路をK分の1に細かくすると、細かくした分だけ動
作速度がK倍上がり、回路の集積度はKの2乗になり、一方で消
費電力がK分の1に下がる。         ──デナード則
─────────────────────────────
 なぜインテルが、困難なICの高集積化に挑んだのかというと
それには企業としての大きなメリットがあるからです。集積度が
上がるとICのサイズは小さくなります。チップのサイズが小さ
くなると、材料も少なくなり、製造コストが下がります。
 機能面ではチップ内の素子から素子への配線は短くなり、省電
力化・高速化につながります。インテルの世界初のマイクロプロ
セッサ「4004」には2300個のトランジスタが使われてい
ましたが、最新の「スカイレーク」には10億個を超える数のト
ランジスタが使われています。2つの性能を比較すると、性能は
3500倍、電力効率は、90000倍、トランジスタの単価は
60000分の1になっています。これがレナード則といわれる
ものです。
 しかし、インテルが、最先端のプロセッサである「スカイレー
ク」を発表した2015年以降のことですが、ムーアの法則の限
界が指摘されるようになったのです。それは、次の2つ要因に基
づくものです。
─────────────────────────────
     1.微細化したトランジスタの機能不全
     2.高集積度の回路から発する熱の問題
─────────────────────────────
 第1の要因は「微細化したトランジスタの機能不全」です。
 チップの微細化が高度に進むと、電子が配線から漏れ出すよう
になり、それが指数関数的に増えて、やがてトランジスタが機能
しなくなります。「スカイレーク」は線幅が14ナノメートルで
したが、微細化の最大の壁は、線幅7ナノメートルであるといわ
れています。ムーアの法則がこのまま続くとすると、線幅が7ナ
ノメートルになるのは2020年頃になります。
 7ナノメートルの壁に関しては、トランジスタの形状を変化さ
せて、ムーアの法則を継続させる考え方があります。これに関し
て、英『エコノミスト』の科学記者のティム・クロス氏は、次の
ように述べています。
─────────────────────────────
 コンピュータの性能をこれまでのようなペースで向上させつづ
けるには、もっと劇的な変革が必要になるだろう。たとえばチッ
プの3次元化によって、ムーアの法則を持続させるといったこと
だ。現代のチップは本質的に2次元(平面)だが、すでにコンポ
ーネントを積み重ねるチップの開発が進んでいる。それによって
チップの底面積は縮小しないかもしれないが、高層ビルのほうが
低層ビルより多くの人を収容できるのと同じで、チップに組み込
むコンポーネントの数を増やせることになる。
         ──英『エコノミスト』編集部/土方奈美訳
   「2050年の技術/英『エコノミスト』誌は予測する」
                       『文藝春秋』
─────────────────────────────
 チップの3次元化はきわめて実現性のある技術です。微細化に
頼らずに、チップを何層にも積み重ねて立体的に接続することで
性能を高めることができます。フラッシュメモリでは、30層〜
40層に積み重ねる技術が既に完成し、商品化されています。こ
のような既存の技術を活用すれば、チップの3次元化は十分可能
であるといえます。
 第2の要因は「高集積度の回路から発する熱の問題」です。
 集積度を高めた回路を高速で動かすと、高い熱が発生します。
トランジスタを動かす電圧を低くすることで、ある程度対応でき
ますが、0・7ボルト以下にすると、トランジスタの動作が不安
定になることがわかっています。
 チップの熱、とくに3Dチップの場合は頭の痛い問題です。現
状のヒートシンクやファンでは、どうしても限界があります。こ
れに関して、科学記者のティム・クロス氏は、次のような画期的
な提案をしています。
─────────────────────────────
 熱を逃すための表面積は発熱量の増加に見合うスピードでは増
えないし、同じ理由から、3Dチップに十分な電力とデータを供
給しつづけるのも難しい。このためIBMが靴箱並みのスーパー
コンピュータをつくるには液体の冷却材が必要だ。そして冷却液
を循環させるため、個々のチップには微細な経路を開けなければ
ならない。冷却液は冷却に加えて、電源の役割も担えるとIBM
は考えている。つまり冷却液をフロー電池の電解質としで使うの
だ(フロー電池では電解質が固定された電極を通過していく)。
        ──英『エコノミスト』編集部著の前掲書より
─────────────────────────────
 コンピュータチップから発する熱は、多くの場合、ファンで冷
却するのが通例ですが、水冷、つまり液体の冷却液で冷やすとい
うアイデアは斬新です。
 かつて私は、水冷のPCを使っていたことがあります。NEC
の特殊な一体型のPCです。今どきのPCは十分オーディオ装置
として使えますが、PCには強力なファンがついているので、オ
ーディオ装置としては最悪です。ティム・クロス氏のいう液体の
冷却材のアイデアはそういう意味で斬新です。これだけのアイデ
アがあれば、ムーアの法則は、まだ十分に継続可能であるといえ
ます。         ──[次世代テクノロジー論/23]

≪画像および関連情報≫
 ●「ムーアの法則」終焉説は根拠なし
  ───────────────────────────
   自民党議員が安全保障関連法案に批判的なメディアに対し
  て、「マスコミを懲らしめるには広告収入をなくせばいい」
  などという発言を行ったことが明るみになり、世間を騒がせ
  た。日本国憲法第21条第1項では、「集会、結社及び言論
  出版その他一切の表現の自由は、これを保障する」と定めら
  れており、メディアは批判的な報道をしても一向に構わない
  ことになっている。したがって、発言が出た同党若手議員に
  よる勉強会「文化芸術懇話会」代表の木原稔議員が同党青年
  局長を更迭されたのは、当然の処置である。
   しかし、明らかに間違っていることを報道した場合、その
  メディアは真摯に間違いを認めて修正報道を行い、陳謝すべ
  きである。それを怠ると、「吉田証言」「吉田調書」をめぐ
  る誤報問題で批判を浴びた朝日新聞のように、大きく信頼を
  失墜させることになる。最近筆者が気になっているのは「半
  導体の微細化」に関する日経グループの一連の報道である。
  彼らは、頭から「微細化は終焉する」と決めてかかって報道
  を行っている気配がある。そのため事実は歪曲され、それを
  読んだ半導体業界関係者をミスリードする危険性がある。本
  稿では、その間違いを指摘し、半導体の微細化は今後少なく
  とも10年は続くことを論じたい。
   月刊誌「日経エレクトロニクス」(日経BP社/4月号)
  は『さらばムーアの法則』というタイトルの記事で、ムーア
  の法則が終焉するという主旨の記事を掲載した。
                   http://bit.ly/2l9bTr7
  ───────────────────────────

インテルの「スカイレーク」.jpg
 
インテルの「スカイレーク」
posted by 平野 浩 at 00:00| Comment(0) | 次世代テクノロジー論 | このブログの読者になる | 更新情報をチェックする
この記事へのコメント
コメントを書く
お名前: [必須入力]

メールアドレス: [必須入力]

ホームページアドレス:

コメント: [必須入力]