I(1950年代)は、コンピュータの能力に過度の期待を抱い
て失敗し、1度目の「AIの冬」に突入します。人間が何気なく
やっていることが、機械にとっては途方もなく難しいことである
ことがやっとわかったのです。
ところが、時代とともに、コンピュータの性能が向上してくる
と、再びAIは復活します。論理(ロジック)のはっきりしてい
る分野に絞って、人間がその分野の専門家の知識をコンピュータ
に与えることによって「エキスパートシステム」を構築し、役立
てることはできないかと考えるようになります。1980年代の
「ルールベースのAI」です。この時期から、日本はAIに積極
的に参入するのです。
しかし、肝心のことが大問題だったのです。それは、知識を機
械に与えることです。機械からみれば「知識の獲得」です。人間
の子供であれば、知識を自律的に学び取り、成長していきますが
コンピュータは自律的に学ぶことはできず、何から何まで人間が
コンピュータに知識を与えるしかなかったからです。
それに、人間の持つ知識は想像以上に多く、しかも知識はどん
どん増えるので人間が与える知識には限界があります。かくして
エキスパートシステムという名の「ルールベースのAI」は破綻
し、AIは2度目の「AIの冬」に突入します。このとき、ほと
んどの人は「AIはこれでもう終わりだな」と思ったものです。
次にUCLAのジュディア・パール氏が主導する統計確率的理
論を導入したAI手法が登場します。これは、エキスパートシス
テムの精度を向上させるのに貢献したことは確かです。しかし、
これも確率自体が「大数の法則」によって支配されるものであり
そういう肝心な大量のデータを欠いていることから、あくまで研
究レベルの状態に止まっていたのです。
しかし、2000年代に入ると、ある「奇跡」が起きます。こ
れによってAIは息を吹き返すのです。この奇跡について、AI
に関する著作の多い小林雅一氏は次のように述べています。
─────────────────────────────
それはまるで、神が仕組んだかのように絶好のタイミングでし
た。1990年代後半から2000年代にかけて、インターネッ
ト、もっと具体的には、その上に構築されたワールド・ワイド・
ウェブ上に世界中の人たちが情報を載せるようになりました。こ
の結果、様々な文書を中心とする大量のデータが蓄積され、しか
も誰もが自由にアクセスできるようになりました。つまり統計・
確率的なべイジアン・ネットワークを実践するお膳立てが整った
のです。 ──小林雅一著
『クラウドからAIへ/アップル、グーグル、フェイスブック
の次なる主戦場』/朝日新書
─────────────────────────────
ネット上には、AIとインターネットの関係について述べてい
る論文やレポートはほとんどありませんが、小林雅一氏のいう通
り、昨今のAIの驚くべき発展は、インターネットと無関係では
ないと思います。
この世界中に張り巡らされたインターネットというインフラの
上に築かれた膨大な数のウェブサイトは、日々更新され、サイト
の数は増えつつあります。世界中のウェブサイトの数は、どのく
らいあるのでしょうか。
諸説がありますが、ウェブサイトとしては約3億サイトぐらい
であり、ページ(URL)という単位で見ると、グーグルによる
と次の通りです。グーグルは、ロボットを使ってウェブページを
探しているので、その数は正確であると思われます。
─────────────────────────────
1,000,000,000,000
ゼロが12個で1兆
https://bit.ly/2ststCw
─────────────────────────────
エキスパートシステムに代表される「ルールベースのAI」に
関わった人たちにとって、コンピュータが知識を獲得するとき不
可欠な「知識ベース」の構築は非常に困難な作業であるうえ、ま
してその内容の頻繁な更新は不可能です。
しかし、ウェブサイトは、日々更新され、記述されている内容
は、あらゆる分野に及んでおり、その数も増えています。しかも
サイトの情報は、コンピュータが読める知識ベースになっている
のです。もちろん、ウェブサイトの情報が正しいとは限りません
が、サイトの内容の正誤については、現在のコンピュータで十分
判断できます。
現在のAIは、自然言語処理の能力が大幅に向上しています。
スマホで次のように音声で話しかけてみてください。
─────────────────────────────
近くに雰囲気の良いレストランはありませんか
─────────────────────────────
そうすると、スマホはGPSによって現在地を確認し、ウェブ
サイトで近くのレストランを検索して、現在地に近いレストラン
を複数探し出し、その店のウェブサイトをスマホに表示してくれ
ます。こんなことは、ごく当たり前のように多くの人がやってい
ますが、これはとんでもなく凄いことをやっているのです。
現在では、ほとんどのレストランは、ウェブサイトを出してい
ます。これがすべての大前提です。それに、すべてのスマホには
GPSが搭載されており、スマホの現在地をつねに把握していま
す。これらのことがすべて揃わないと、上記のような検索はでき
ないのです。ウェブサイトの存在がいかに重要であるかがわかる
と思います。
このように、3億を超えるウェブサイトが、現在のAIを支え
ています。そしてこれがAIの「機械学習」に結び付くことにな
るのです。ウェブサイトの出現は、AI開発者にとってまさに奇
跡です。 ──[次世代テクノロジー論U/020]
≪画像および関連情報≫
●AIの原点を探る/青山学院大学美添教授
───────────────────────────
――具体的にはどういうことでしょうか。
A:ベイズ統計にもいろいろありますが、いずれも、解析に
「主観確率」(判断確率)という概念を採用しています。古
典統計学では、未知でも確率は固定・客観的数値です。ベイ
ズ統計では、確率は意思決定者の持つ情報を反映して変化す
ることがあります。
――確率を後から恣意的に変えられ、それがAI機械学習の
基礎原理になっている?
A:恣意的に確率を変更するというのは、ベイズ統計の誤解
されやすい部分です。ベイズ流に厳密に構成された主観確率
は、人間は合理的判断をするという原理(公理体系)に基づ
いた理論で、不確実性に直面しても「自分の効用関数を最大
化するように意思決定を行う」というものです。当然、人に
よって効用関数は異なります。しかし効用が最大になるよう
に意思決定を行うという結論が導かれます。これが、ベイズ
統計の原理です。そして、これが重要ですが、意思決定の根
拠情報が追加的に与えられれば、それにより、主観確率は合
理的手順で修正されます。この手順が「ベイズの公式」と呼
ばれる形式です(解説参照)。
――機械学習の基礎になるということですね。
A:大雑把にいえばそうで、機械学習では、ベイズの定理を
利用して判断を修正します。ただし原理的なベイズ統計には
あまり関心はなく、経験的に有効だから利用するようです。
ハーバード時代の私の恩師たちが聞いたら、嘆くと思います
ね。 https://bit.ly/2J3YZC
───────────────────────────
小林雅一氏